Abstract
An increasingly popular approach to the analysis of neural data is to treat activity patterns as being constrained to and sampled from a manifold, which can be characterized by its topology. The persistent homology method identifies the type and number of holes in the manifold, thereby yielding functional information about the coding and dynamic properties of the underlying neural network. In this work, we give examples of highly nonlinear manifolds in which the persistent homology algorithm fails when it uses the Euclidean distance because it does not always yield a good approximation to the true distance distribution of a point cloud sampled from a manifold. To deal with this issue, we instead estimate the geodesic distance which is a better approximation of the true distance distribution and can therefore be used to successfully identify highly nonlinear features with persistent homology. To document the utility of the method, we utilize a toy model comprised of a circular manifold, built from orthogonal sinusoidal coordinate functions and show how the choice of metric determines the performance of the persistent homology algorithm. Furthermore, we explore the robustness of the method across different manifold properties, like the number of samples, curvature and amount of added noise. We point out strategies for interpreting its results as well as some possible pitfalls of its application. Subsequently, we apply this analysis to neural data coming from the Visual Coding-Neuropixels dataset recorded at the Allen Institute in mouse visual cortex in response to stimulation with drifting gratings. We find that different manifolds with a non-trivial topology can be seen across regions and stimulus properties. Finally, we interpret how these changes in manifold topology along with stimulus parameters and cortical region inform how the brain performs visual computation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.