Abstract
Abstract The potentiality of geocooling (i.e. free cooling) with borehole heat exchangers is analysed for low energy office buildings. The borehole heat exchanger field is coupled to a heat pump in winter and to the cold distribution system in summer through a flat plate heat exchanger. The cooling requirement satisfied by a direct heat transfer into the ground through the borehole heat exchangers is so-called geocooling. A dynamic system model has been developed to simulate the building, the emission of thermal energy through thermally activated building systems, the technical installation including the borehole heat exchanger field and the interconnected thermal interactions. Thermal comfort requirements determine the building energy needs and the size of the ground coupled system. A methodology is presented for best system design. Building design, system technical feasibility and limits of the ground coupled system are discussed and result from the analysis of the numerous system simulations. Geocooling potential depends on the quality of the building design and its heat emission. The importance of the ground thermal conductivity and the ground recharge ratio on the system design are highlighted. Simple design sizing keys are proposed for a fast pre-sizing of a borehole field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.