Abstract

We investigated the potential for geosynthetic capillary barriers to reduce frost heave in soils by freezing upright, cylindrical soil specimens with horizontal disks of geosynthetics placed in them. During freezing, water was freely available at 25 mm above the base of 150 mm high specimens. The geosynthetics were located 5 mm above the water supply. We measured frost heave and final water content profiles of specimens containing geosynthetic capillary barriers and control specimens. The thermal conditions of the tests were typical of pavements in cold regions. Geotextiles prepared to simulate field conditions (i.e., moistened and containing soil fines) failed to significantly reduce frost heave. However, geocomposites comprising needle-punched polypropylene geotextiles sandwiching a drainage net, prepared in the same way as the moistened geotextiles containing soil fines, reduced frost heave when the soil water suction head in the overlying soil was 1800 mm or more. The geocomposites did not significantly reduce heave when the soil water suction head in the overlying soil was 800 mm or less. This is probably due to water migration between the two layers of soil, through the geotextiles and along the net of the geocomposite.Key words: capillary barrier, frost heave, geosynthetic, geotextile, geocomposite, soil freezing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call