Abstract

The occurrence of both Archean granulite terrains and granulite xenoliths in Cenozoic basalts from the Sino-Korean Craton (SKC) provides an ideal opportunity to define composition and evolution of continental lower crust of eastern China. The granulite xenoliths in Quaternary basanites from Nushan (southeastern SKC) show a basic-intermediate composition that is distinctly different from mafic granulites from Hannuoba (western SKC). They instead resemble the Archean granulite terrains in terms of mineral and whole rock compositions. Trace element modeling suggests that the “protoliths” of the Nushan granulites were likely subjected to fractional crystallization and assimilation of old crustal components. Zircon SHRIMP U-Pb dating shows at least two episodes in the formation of the lower crust at Nushan. The protoliths of the Nushan granulites were most likely formed at ca. 2.5 Ga and metamorphosed at 1.9 Ga. This late Archean crustal growth was followed by Mesozoic (∼140 Ma) basaltic underplating, which was probably coeval with the widespread thermo-tectonic lithospheric reactivation in eastern China. The Nushan granulites are therefore interpreted as dominantly derived from the late Archean crystalline basement and subordinately from the mafic layer that was accreted to the basement during late Mesozoic lithospheric thinning. The consistencies between the depth to seismic Moho and the depth to crust-mantle boundary, and between the calculated V p (mostly < 7.0 km/s) for granulite xenoliths and the observed velocity structure strongly suggest no obvious high-velocity lowermost crust beneath Nushan and the granulite xenoliths as the dominant components in the lower crust at this locality. The modeled composition of the Nushan lower crust has SiO 2 of ca. 52%, which is more basic than that at Hannuoba (SiO 2 ≈ 58%, Liu et al., 2001). Such a compositional difference, in conjunction with contrasting age and seismic velocity structure of the lower crust at the two localities, highlights two fundamentally distinct tectonic domains in the SKC. The data presented in this study also yield implication for the origin of the compositional difference between granulite xenoliths and terrains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call