Abstract

The Bighorn Mountains in north-central Wyoming reveal one of the largest exposures of 2800 Ma to 3000 Ma rocks in Laurentia. The northern part of the crystalline core is composed of the composite Bighorn batholith, whereas the central and southern areas of the range expose older gneiss complexes as well as minor supracrustal rocks. We provide new high-resolution LA-ICPMS U-Pb data on zircons sampled from eleven samples of tonalite, granodiorite, mylonite, and migmatite from the southern margin of the Bighorn batholith in the headwaters of the north fork of Paint Rock Creek. These rocks range from strongly foliated to massive and are difficult to subdivide into mappable units in the field because of their lithologic and structural similarities. Several cross-cutting mylonite zones (<10-meter-wide) that trend ~N70°E-N80E and dip steeply are present in the study area. Three distinct age populations are evident: ~2930-2940 Ma, 2905-2915 Ma, and 2880-2890 Ma. Several samples contain xenocrystic zircons >3000 Ma, ranging to 3500 Ma, which indicates assimilation of older crust. Each of the three age populations reported here are older than the previously reported age of ~2850 Ma age for the northern Bighorn Batholith but within the 2890 Ma, 2940 Ma, and 2950 Ma age groupings previously reported for the southern gneiss terrane. Three conclusions can be drawn from these data. First, the Bighorn batholith, at least along the southern margin, contains phases at least 80 million years older than the northern phase of the body, and emplacement was protracted and occurred over a ~100 Ma period. Second, episodes of both intrusion and shearing took place in this area as the various phases of the Bighorn batholith were emplaced. Finally, the existence of inherited zircons within the Bighorn batholith in the age range of ~3.0 Ga to 3.5 Ga indicates that the Bighorn batholith intruded through older crust. This older crust is perhaps a northern extension of Sacawee block in the northern Granite Mountains of central Wyoming, which may underlie the Bighorn Mountains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.