Abstract
Detailed geochronology along with petrographic, mineralogical and geochemical studies have been conducted on recently found diamond-bearing kimberlitic and related rocks in the Rae Craton at Aviat and Qilalugaq, Melville Peninsula, north-east Canada. Magmatic rocks from the Aviat pipes have geochemical (both bulk rock and isotopic) and mineralogical signatures (e.g., core to rim Al and Ba enrichment in phlogopite) similar to Group I kimberlite. In contrast, Aviat intrusive sheets are similar to âmicaceousâ Group II kimberlite (orangeite) in their geochemical and mineralogical characteristics (e.g., phlogopite and spinel compositions, highly enriched Sr isotopic signature). Qilalugaq rocks with the least crustal contamination have geochemical and mineralogical signatures [e.g., high SiO2, Al2O3 and H2O; low TiO2 and CO2; less fractionated REE (rare earth elements), presence of primary clinopyroxene, phlogopite and spinel compositions] that are similar to features displayed by olivine lamproites from Argyle, Ellendale and West Greenland. The Naujaat dykes, in the vicinity of Qilalugaq, are highly altered due to extensive silicification and carbonation. However, their bulk rock geochemical signature and phlogopite chemistry are similar to Group I kimberlite. UâPb perovskite geochronology reveals that Aviat pipes and all rocks from Qilalugaq have an early Cambrian emplacement age (540â530 Ma), with the Aviat sheets being ~30 Ma younger. This volatile-rich potassic ultramafic magmatism probably formed by varying degrees of involvement of asthenospheric and lithospherically derived melts. The spectrum of ages and compositions are similar to equivalent magmatic rocks observed from the nearby northâeastern North America and Western Greenland. The ultimate trigger for this magmatism could be linked to Neoproterozoic continental rifting during the opening of the Iapetus Ocean and breakup of the Rodinia supercontinent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.