Abstract

The Karimnagar Granulite Belt (KGB) and the Bhopalpatnam Granulite Belt (BGB) occur along both flanks of the Pranhita-Godavari (PG) rift basin. We present a state-of-the-art overview on the geochronological and tectonic aspects of these belts and surrounding geologic domains, and report new age data on zircon, monazite and uraninite recovered from granulite facies assemblages from KGB and BGB based on electron microprobe analyses (EPMA). Zircons from KGB charnockites show core ages of up to 3.1 Ga mantled by rims of 2.6 Ga. Zircons from BGB have 1.9 Ga cores mantled by 1.7 Ga rims. Zircons with core ages of 1.6 to 1.7 Ga in BGB rocks suggest new growth at this time. Monazites and uranitite from KGB show clear peaks with well-defined ages in the narrow range between 2.42±0.08 Ga and 2.47°0.03 Ga. Rims of monazite show mean age of 2.21±0.08 Ga. Monazites from BGB define sharp linear trend in PbO vs. ThO 2* diagram delineating a clear isochron with age of 1.59±0.03 Ga. Age data from KGB and BGB presented in this report negate current models linking these terrains to "Godavari Granulite Belt" and considering them as single and contemporaneous entity. The mid-Archaean to early Palaeoproterozoic signature recognized from KGB is totally missing in BGB. On the other hand, KGB rocks do not record any evidence for major Mesoproterozoic thermal regime. The two granulite belts shouldering the PG rift basin have therefore evolved in different times under distinct P-T conditions and thermal regimes. Our results have important implications in evaluating models of supercontinent assemblies, particularly the older assemblies of Ur, Columbia and Rodinia. While tectonothermal events in KGB broadly match with those of East Dharwar, we propose that BGB represents a 1.6 Ga collisional mobile belt between the Bastar and the Dharwar cratons. The 1.6 Ga collisional mobile belt at the southern margin of the Bastar craton was superposed by rift activity along the PG basin at 1.5 Ga. This sequence of events goes against the existence of a 3.0 Ga old contiguous assembly of Ur but closely matches with the history of accretion and break-up of the Columbia. Further, parts of the PG basin located away from the influence of the Eastern Ghats Mobile Belt, neither recorded any Grenville ages (1.0 Ga) corresponding to the Rodinia accretion nor late Pan-African ages (ca. 550 Ma) relating to the Gondwana amalgamation, indicating that the region did not witness any of these younger tectonic events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call