Abstract

The depositional histories of trace metals (Pb, Cu, and Zn) in sediment cores from three Ghanaian estuaries were reconstructed using radioisotope-derived (210Pb and 137Cs) geochronologies. A core collected from each of the Amisa, Sakumo II and Volta estuaries was analyzed for trace metals and radionuclides. Lead-210 and 137Cs dating via gamma spectroscopy, and trace metal analysis via inductively coupled plasma mass spectrometry (ICP-MS) were used in deriving sedimentation rates, geochronologies and accumulation trends of trace metals. The sedimentation rates in all three estuaries (in the range of 0.54–0.83 cm yr−1) were greater than the predicted sea level rise (∼0.33 cm yr−1) for the Accra Coast of Ghana. The 210Pb depositional rates of 6.83 dpm cm−2 y−1, 2.74 dpm cm−2 y−1 and 1.75 dpm cm−2 y−1 estimated for the Amisa, Sakumo II and Volta estuaries, respectively, are higher than those recorded in other latitudes. Trace metal analysis revealed differences in the concentrations of Cu, Pb and Zn between deeper and surficial layers of each core to be in the range of 10–20%, which is well within the natural variations attributed to geochemical factors. Relative to the Amisa and Volta estuaries, the temporal profiles of Al-normalized metal concentrations and estimated fluxes suggest anthropogenic processes augmented the natural fluxes of trace metals, particularly Zn into the Sakumo II estuary during the last 7 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call