Abstract

The giant Zhuxi tungsten deposit is located in the Taqian-Fuchun Ore Belt in northeastern Jiangxi province, and genetically associated with the Zhuxi granitic stocks and dykes. Three mineralization-related granites including granite porphyry dykes (GP), biotite granitic stocks (BG), and white granitic dykes (WG), were identified in the Zhuxi deposit. SHRIMP zircon U–Pb analysis for the three granitic rocks present ages ranging from 153.5±1.0Ma to 150.4±1.0Ma. The BG mainly contains quartz, microcline, albite, biotite and muscovite with minor accessory minerals including zircon, apatite, monazite, Ti/Fe oxides, and dolerite. However, the WG is mainly composed of quartz, microcline and albite with minor muscovite and accessory minerals. The GP is a medium-grained porphyritic granite and its phenocrysts include quartz, alkali feldspar, muscovite and plagioclase. All the Zhuxi granites have high SiO2 content (71.97wt%–81.19wt%) and total alkali (3.25wt%–9.42wt%), and their valid aluminum saturation index (ASI) values show a wide range of 1.03 to 2.49. High Rb/Sr ratios, low Sr content (<50ppm) and markedly negative Eu anomalies of GP, WG and BG demonstrated that the Zhuxi granites are highly fractioned and intensive crystal differentiated. Because they display the features of both I- and S-types granites, they were confirmed to be I-S transform-type granites. Whole rock εNd(t) and zircon εHf(t) values fall into the ranges of −6.98 to −11.97, and −3.1 to −11.5, and the Nd (TDM2) and Hf two-stage model ages (TDMc) are 1.51–1.92Ga and 1.42–2.01Ga, respectively. Geochemical and isotopic data suggest that these highly fractionated I–S transform-type granites were originated from magmas which showed affinity with the Proterozoic continent and the Shuangqiaoshan Group and little mantle contribution was involved during the generation of Zhuxi granitic rocks. Extreme fractional crystallization resulted in further enrichment of tungsten in the evolved granitic magma. New data, presented together with previously published data, suggest that the Zhuxi granitic complex was likely to be formed during lithospheric compression setting during the late Jurassic to early Cretaceous. The biotite granite stock predominately contributed to the production of skarn alteration and mineralization, followed by the white granite dyke; the granite porphyry dykes have little effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call