Abstract

We present systematic U–Pb age data collected by laser ablation multi-collector inductively coupled plasma mass spectrometry, precise geochemical data, and Nd isotope data for igneous rocks from the southeastern Lesser Xing’an Range (SE LXR). The results indicate that the formation ages as follows: Maojiatun alkaline granite, 207.2 ± 0.84 Ma and 204.6 ± 0.93 Ma; Diorite porphyrite, 164.5 ± 0.97 Ma; and Tieli syenogranite, 186.7 ± 1.50 Ma. The alkaline granite has high silicon, potassium, alkali, and FeOT contents; it is enriched in high field strength elements, Zr, Hf, Th, Rb, and U; is depleted in Ba, Sr, Nb, Ta, P, Ti, etc.; and has high ratios of 10000Ga/Al. It shows an A2-type granite affinity. The Tieli alkali-feldspar granite has high total alkali contents and is enriched in high field strength elements and rare earth elements and depleted in Sr, Ba, Ti, and P, and shows varying degrees of alkalinity. Rocks from SE LXR display similar εNd (t) values with corresponding to Nd model ages of 1095 to 813 Ma. The igneous rocks from the SE LXR are proposed to be derived from melting of the Neoproterozoic lower crust and potential magma mixing with ancient crystalline basement. The formation of the Maojiatun alkaline granite occurred in response to a postorogenic event following the closure of the Paleo-Asian Ocean. However, the SE LXR exhibited an extensional back-arc tectonic setting in the Early Jurassic. The Middle Jurassic diorite porphyrite could be related to the temporary stagnation of the westward subduction of the Paleo-Pacific plate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call