Abstract

Chemical stratigraphy is becoming an increasingly important tool in chronostratigraphic interpretations of exploration wells. Chemical stratigraphy data are well suited to modeling in the time and frequency domains with quantitative signal processing and data-dependent filtering techniques, such as power spectral analysis, autocorrelation, cross-correlation, cross power spectral analysis, phase-sensitive detection, and matched filters. Properly analyzed quantitatively, chemical stratigraphy data provide an ideal framework for stratigraphic correlation of thick sedimentary sections with a high degree of resolution, chronostratigraphic interpretations with a high degree of reliability, as well as mapping and timing of diagenetic trends and gradients. In this presentation, the authors use a combination of these techniques to compare several recently developed types of chemical stratigraphies. One type record is based on global changes in the stable isotopic composition of seawater. The other type records are based on composite stable isotope and geochemical records for Pliocene-Pleistocene exploration wells from the northwestern Gulf of Mexico. Coherency analysis was used to subtract the global portion of the signal from the Gulf sections due to freshwater discharge vents, paleotemperature changes, diagenesis, and hydrocarbon migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.