Abstract
U-Pb dating using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), δ13C, δ18O, clumped isotopes and 87Sr/86Sr analysis, and electron microprobe have been applied to fracture-filling calcites and host carbonates from the Lower Pedraforca thrust sheet, in the SE Pyrenees. These data are used to determine the type and origin of migrating fluids, the evolution of the palaeohydrological system and timing of fracturing during the emplacement of this thrust sheet, as described in the article “From hydroplastic to brittle deformation: controls on fluid flow in fold and thrust belts. Insights from the Lower Pedraforca thrust sheet (SE Pyrenees)” – Marine and Petroleum Geology (2020). The integration of these data is also used to compare the fluid flow evolution of the Southern Pyrenees with that of other orogens worldwide and to generate a fluid flow model in fold and thrust belts. At a more local scale, the U-Pb dataset provides new absolute ages recording the deformation in the Lower Pedraforca thrust sheet, which was previously dated by means of indirect methods such as biostratigraphy of marine sediments and magnetostratigraphy of continental deposits.
Highlights
U-Pb dating using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), δ13C, δ18O, clumped isotopes and 87Sr/86Sr analysis, and electron microprobe have been applied to fracture-filling calcites and host carbonates from the Lower Pedraforca thrust sheet, in the SE Pyrenees
At a more local scale, the U-Pb dataset provides new absolute ages recording the deformation in the Lower Pedraforca thrust sheet, which was previously dated by means of indirect methods such as biostratigraphy of marine sediments and magnetostratigraphy of continental deposits
This data set provides new insights of the relationship between fluid flow and deformation in the SE Pyrenees during a particular period of their tectonic history. This data is of interest for geoscientists studying the relationships between fluid flow and deformation in fold and thrust belts and those working in the geochronology of the SE Pyrenean deformation
Summary
Geochronological and geochemical data from fracture-filling calcites from the Lower Pedraforca thrust sheet (SE Pyrenees) U-Pb dating using laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), δ13C, δ18O, clumped isotopes and 87Sr/86Sr analysis, and electron microprobe have been applied to fracture-filling calcites and host carbonates from the Lower Pedraforca thrust sheet, in the SE Pyrenees. Benedicto et al / Data in Brief 31 (2020) 105896 evolution of the Southern Pyrenees with that of other orogens worldwide and to generate a fluid flow model in fold and thrust belts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.