Abstract

The Qatruyeh iron deposits, located on the eastern border of the NW-SE trending Sanandaj-Sirjan metamorphic zone, southwest of Iran, are hosted by a late Proterozoic to early Paleozoic sequence dominated by metamorphosed carbonate rocks. The magnetite ores occurred as layered to massive bodies, with lesser amounts of disseminated magnetite and hematite-bearing veins. Textural evidences, along with geochemical analyses of the high field strengths (HFSEs), large ion lithophiles (LILEs), and rare earth elements (REEs), indicate that the main mineralization stage occurred as low-grade layered magnetite ores due to high-temperature hydrothermal fluids accompanied by Na-Ca alteration. Most of the main ore-stage minerals precipitated from an aqueous-carbonic fluid (3.5–15 wt.% NaCl equiv.) at temperatures ranging between 300° and 410°C during fluid mixing process, CO2 effervescence, cooling, and increasing of pH. Low-temperature hydrothermal activity subsequently produced hematite ores associated with propylitic alteration. The metacarbonate host rocks are LILE-depleted and HFSE-enriched due to metasomatic alteration.

Highlights

  • The last decade has seen major progress in our understanding of the origin of iron ore deposits worldwide

  • Uranium could be contributed by a second fluid mixing with hydrothermal fluids at the site of mineralization or it may have been leached from host rocks [65]

  • Based on ore mineral types and alteration assemblages, the mineralization processes have been divided into the following stages: (I) layered magnetite ore stage, (II) sulfide ore stage, and (III) hematite ore stage

Read more

Summary

Introduction

The last decade has seen major progress in our understanding of the origin of iron ore deposits worldwide. The hydrothermal iron deposits generally are found at many locations around the Pacific basin, Central America, Australia, and Japan [15]. They are commercially far less important as global source of iron than banded iron formations and igneous iron deposits, except for many countries without these types of iron deposits. Depending on the physicochemical conditions the protore iron mineralization could consist of magnetite or hematite, or a mix of the two. They occur in different tectonic environments, such as intracontinental terranes associated with anorogenic magmatism, continental arc terranes, and metamorphic belts [18,19,20]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.