Abstract

The geochemistry of zircons from autochthonous granite gneiss (Lc1) anatectic (Lc3–4) and injection (Lc5) leucosomes has been studied. Neoarchean prismatic zircon grains with cores that reveal oscillatory zoning and are overgrown by a couple of rims have been seen to occur in Lc3–4. The prismatic grains are occasionally modified into isometric grains with block structure by Paleoproterozoic secondary alteration, which is accompanied by the depletion in HREE, Y, Nb, U; enrichment in Ti, Li, LREE; increasing Th: U ratio and Ce anomaly; and decreasing Eu anomaly. The Paleoproterozoic alteration is related to the low-temperature amphibolite-facies metamorphism followed by partial melting. The Neoarchean prismatic zircons were formed under the conditions of high-temperature amphibolite-facies ultrametamorphism at a temperature of ∼700°C. Judging by the higher Ce/Ce* ratio, the metamorphic rounded zircons were formed at a higher oxygen fugacity as compared with ultrametamorphic zircons from Lc1 and Lc3–4. Specific variation trends of trace element concentrations in prismatic L1 and L3–4 zircons, occasionally with opposite directions, emphasize their different origin. The former are products of metasomatic granitization completed by selective melting with appearance of dispersed melt drops, while the latter are products of anatexis in the open system and by lit-par-lit migmatization. Prismatic zircons L5 are characterized by rhythmic zoning in the core surrounded by rims. The concordant U-Pb age of rims is 129 Ma; the 206Pb/238U age of cores varies from 2213 to 147 Ma. The appreciable enrichment (by a factor of 2–13) of zircons in all minor elements from the core to the rims is caused by the effect of residual postmagmatic fluid, which not only altered zircons, but also facilitated the recrystallization of granite into a pegmatoid variety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call