Abstract

Hawi lavas form the late stage alkalic cap on Kohala Volcano and range in composition from hawaiite to trachyte. New, detailed field mapping of Kohala and reinterpretation of previously published age data suggest that there was no significant eruption hiatus between the Hawi and underlying Pololu shield lavas as was previously suggested. Mineral and whole-rock chemical data are consistent with a crystal fractionation origin for the hawaiite to trachyte compositional variation observed within the Hawi lavas. Plagioclase, clinopyroxene, Ti-magnetite, olivine and apatite fractionation are needed to explain this variation. The clinopyroxene fractionation may have occurred at moderate pressure because it is virtually absent in these lavas and is not a near liquidus phase at pressures of less than 8 Kb. Plagioclase would be buoyant in the Hawi hawaiite magmas so a mechanism like dynamic flow crystallization is needed for its fractionation and to account for the virtual absence of phenocrysts in the lavas. Hawi lavas are distinct in Sr and Nd isotopic ratios and/or incompatible element ratios from the Pololu lavas. Thus they were derived from compositionally distinct sources. Compared to other suites of Hawaiian alkalic cap lavas, Hawi lavas have anomalously high concentrations of phosphorus and rare earth elements. These differences could be due to greater apatite content in the source for the Hawi lavas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call