Abstract
Offset of prograde hydrothermal alterations by retrograde reactions is evident in sediments from a piston core (PC6, 8 m long) from the Guaymas Basin, Gulf of California. Geochemical and mineralogical analyses of sediments and pore fluids show superimposed geochemical signals that indicate currently active reactions are modifying previously formed secondary solids. Hydrothermal barite was formed in a previously active flow channel between 150 and 250 cm depth. Hydrothermal gypsum is presently dissolving at depths > 780 cm, below which hydrothermal fluid flow is channeled by a secondary dolomite layer. Thermal stress of organic matter generates hydrothermal gas and petroleum having wide ranges of compositions and maturities. A significant amount of hydrothermally generated oil has been transported laterally through a porous debris flow (approx. 240 cm subbottom), overwhelming the indigenous bituminous matter. Water soluble petroleum constituents have disseminated throughout the cored sediments. From 400 to 700 cm depth the immature organic matter continues to experience thermally-enhanced diagenesis, and an even higher thermal stress has occurred at the bottom of the core. Enhanced bacterial degradation of organic matter has led to depletion of pore water sulfate and enrichment of ammonium (NH 4 +) in both pore fluid and sediment, resulting in formation of NH 4 + bearing secondary clay minerals at depths below 780 cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.