Abstract

Abstract The Koyukuk-Chandalar mining district of the Brooks Range mineral belt in north-central Alaska contains numerous placer gold deposits but few known lode gold sources. Gold grains, collected from 46 placer localities and 6 lode gold sites in the district, were analyzed for Ag and 37 trace elements utilizing direct current-arc optical emission spectroscopy. When possible, several measurements were made on each sample and averaged. Gold content was calculated by the summation of the 38 elements determined and subtracting from 100. The objectives of our study were to characterize the deposits by defining the type and number of distinct geochemical characteristics for the Au, to determine relationships of Au in placer deposits to possible lode sources (placer and lode), to identify possible primary sources of placer gold, and to study processes of placer formation. Interpretation of results emphasize that the Au grains are almost invariably ternary (Au-Ag-Cu) alloys. The average Cu content is 0.040% and the average Ag content and fineness [(Au/Au+Ag)×1,000] are 10.5% and 893 parts per thousand, respectively, for the 46 placer localities. Six geochemically distinct types of placer gold can be identified in the Koyukuk-Chandalar mining district based on Ag and Cu values. One type with an average Ag content of 21.2%, an average Cu content of 0.007%, and 786 average fineness is found only in the eastern part of the district. Placer gold grains that have an average Ag content of 6.0%, an average Cu content of 0.276%, and 940 average fineness were found in the western part of the district. Four intermediate types generally occur in order across the district. Variations in the chemistry of the placer gold can be related to variable depositional environments at the primary gold sources. Placer gold geochemistry is important in determining the origin and depositional environment of the primary Au sources and could add to the knowledge of the thermal history of the southcentral Brooks Range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call