Abstract

Metabasites (amphibolites, garnet amphibolites, and basic crystalline schists) compose numerous sheeted bodies (often highly boudined) from a few to 100 meters thick in the plagiogneisses and migmatites of the Kolpakov Group. Chemically, they are reconstructed as basalts and picrites that were metamorphosed, as host terrigenous rocks, under the kyanite-sillimanite subfacies of the amphibolite facies (t = 620–650°C, Ps = 5.9–6.9 kbar). Metabasites are dominated by amphibolites and basic crystalline schists distributed throughout the entire section of the Kolpakov Group, whereas garnet amphibolites are more typical of the upper parts of the group, where they are intercalated with amphibolites, basic crystalline schists, plagiogneisses, and quartzites. Metaultrabasites (plagioclase-free amphibolites) occur much more rarely as small boudins up to few meters in size. According to U-Pb SHRIMP zircon dating, the plagiogneiss protolith age corresponds to the end of the Early-Late Cretaceous (90–100 Ma), which is similar in age to the weakly metamorphosed terrigenous deposits of the Kikhchik Group of the Sredinny Range. This allows us to consider the terrigenous rocks of these groups as isofacial sedimentary rocks. The same age (Early-Late Cretaceous boundary) was taken for protoliths of metabasites forming interbeds among metaterrigenous deposits of the Kolpakov Group. The interval of 100−90 Ma coincides with the beginning of the formation of the Okhotsk-Chukotka volcanogenic marginal-continental belt in East Asia. It is shown that the Kolpakov Group possesses the geochemical features of tholeiitic basalts of different geodynamic settings and comprises both typically island arc (low-Ti) and oceanic (moderate to high-Ti) tholeiites associated with ultrabasic volcanic rocks—picrites. Such a chemical peculiarity of basic rocks is typical of the marginal-continental extension zones (pull-apart basin) that were initiated on the sialic crust. It is obvious that similar geodynamic setting of the basite magmatism existed for the Sredinny Range of Kamchatka. The ascent of the mantle matter beneath the extension zone of the continental crust of the sedimentary basin and its intersection by faults that formed simultaneously with the Okhotsk-Chukotka volcanogenic belt served as the beginning of the basite volcanism in the sedimentary basin. They provided an intense fluid effect and a temperature increase in the crust with subsequent granitization and metamorphism of volcanogenic-terrigenous deposits and, finally, the development of the modern structure of the Sredinny Kamchatka Massif. The intense Late Cretaceous basite volcanism and associated granitoid magmatism in Kamchatka were presumably caused by the ascent of mantle plumes bearing hydrogen fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call