Abstract
Fe-Cu deposits in the Kangdian Fe-Cu metallogenic province, SW China, are hosted in Paleoproterozoic meta-volcanic-sedimentary sequences and are spatially associated with coeval mafic intrusions. Several well-known examples are the giant Lala, Dahongshan, and Yinachang deposits. They have a common paragenetic sequence of an early Fe-oxide stage associated with sodic alteration and a late Cu-sulfide stage associated with potassic-carbonate alteration. Magnetite dominates the Fe-oxide stage of these deposits but is also present in the Cu-sulfide stage of the Lala deposit. This study uses trace element compositions of magnetite to examine the nature and origin of the ore-forming fluids. The magnetite has variable concentrations of Ti, Al, Mg, Mn, Si, V, Cr, Ca, Co, Ni, Sc, Zn, Cu, Mo, Sn, and Ga, which are thought to have been controlled mainly by fluid compositions and/or intensive parameters (e.g., temperature and oxygen fugacity (fO2)). Fluid-rock interaction and coprecipitating mineral phases appear to be less important in controlling the magnetite compositions. Magnetite grains in the Fe-oxide stage of the Lala and Dahongshan deposits have comparable trace element compositions and were likely precipitated from chemically similar fluids. High Ni contents of magnetite in both deposits, coupled with previous isotopic data and the fact that the two deposits are spatially associated with coeval mafic intrusions, strongly suggest that the ore-forming fluids were genetically related to the mafic magmas that formed the intrusions. Magnetite grains in the Fe-oxide stage of the Yinachang deposit have much lower V and Ni but higher Sn and Mo contents than those of the Lala and Dahongshan deposits and are thus thought to have precipitated from more oxidized and Mo-Sn-rich fluids that may have evolved from relatively felsic magmas. Magnetite grains from the Cu-sulfide and Fe-oxide stages of the Lala deposit are broadly similar in composition, but those in the Cu-sulfide stage have slightly higher Cu, Zn, and Mn and are thought to have crystallized from relatively low-temperature and Cu-Zn-Mn-rich fluids evolved from the fluids of the early Fe-oxide stage. Our results show that magnetite from the Fe-Cu deposits in the Kangdian Province, banded iron formation, Fe skarn deposits, diabase-hosted hydrothermal Fe deposits, and magmatic deposits has significantly different compositions. We propose that covariations of Co-Ni, Zn-Sn, and Co/Ni-Mn can be used to effectively discriminate different deposit types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.