Abstract

Abstract Seawater is the most important reservoir for terrestrial iodine (mean concentration 58 µgl −1 I); this is a major influence on iodine distribution in the secondary environment. Volatilization of iodine from the oceans, possibly as elemental iodine or as an organically-bound species, is the main source of the element in the environment. The distribution of iodine in the secondary environment is, therefore, largely controlled by proximity to the oceans, with rainwater and surface run-off relatively enriched in iodine in near-coastal regions. Soil iodine content is also strongly influenced with coastal soils being much enriched and central continental soils being depleted. Topography has a marked influence with soils in rain shadow areas being relatively depleted in iodine. While iodine input is a major controlling influence on its geographical distribution in soils, the soil’s ability to retain iodine is also an important factor. Organic matter together with iron and aluminium oxides and clays are the important sinks of soil iodine. An additional factor in the distribution of iodine in the secondary environment, and its subsequent availability to the biosphere, relates to its speciation in soils. In acid oxidizing conditions iodine is likely to be present as the I − ion and as such liable to be volatilized as I 2 . In near-neutral or alkaline conditions iodine is likely to be present as the IO 3 − ion which is not volatilized. Soils in limestone areas, with pH values of 7 and above, have thus been found to be much enriched in iodine compared to acidic soils in neighbouring areas. It is suggested that iodine from oceanic sources migrates in a series of ‘steps’ across landmasses by deposition followed by revolatilization. High pH soils and organic-rich soils then act as a migration barrier for iodine. In addition, it is suggested that volatilized iodine is bioavailable and any geochemical barrier to such volatilization deprives the biosphere of a major source. In this context it is interesting to note that several goitre endemias occurred in areas with limestone bedrock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.