Abstract

AbstractThe tubeworm Riftia pachyptila is a key primarily producer in hydrothermal vent communities due to the symbiosis with sulphur-oxidizing bacteria, which provide nourishment to the worm from sulphides, oxygen and carbon dioxide. These substances diffuse from the vent water into the bloodstream of the worm through their tentacular crowns, and then to the bacteria, hosted in a specialized organ of the worm, called a trophosome. The uptake rates of these substances depend on the surface/volume relationship of the tentacles. We here describe two morphotypes, ‘fat’ and ‘slim’, respectively, from the basalt sulphide-rich vents at 9 °N and 21 °N at the East Pacific Rise, and the highly sedimented, sulphide-poor vents at 27 °N in the Guaymas Basin. The ‘fat’ morphotype has a thicker body and tube, longer trunk and smaller tentacular crowns, whereas the ‘slim’ morphotype has shorter trunk, thinner body and tube, and presents longer tentacular crowns and has a higher number of tentacular lamellae. Given the dependence on sulphides for the growth of R. pachyptila, as well as high genetic connectivity of the worm’s populations along the studied localities, we suggest that such morphological differences are adaptive and selected to keep the sulphide uptake near to the optimum values for the symbionts. ‘Fat’ and ‘slim’ morphotypes are also found in the vestimentiferan Ridgeia piscesae in similar sulphide-rich and poor environments in the northern Pacific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call