Abstract

The c. 1.1 Ga Kgwebe metavolcanic rocks exposed in the northwest of Botswana are late Kibaran rocks. They represent a bimodal suite of Within-Plate low titanium-phosphorus (LTP) continental tholeiites and post-orogenic Within-Plate high-K rhyolites. The chemical compositions of the Kgwebe mafic rocks are characterized by low values of Ce/Pb (<10) and high La/Nb ratios (average c. 2, maximum 4). Mid-ocean ridge basalts (MORB)-normalized spidergrams show marked enrichment in mobile elements (Sr, K, Rb, Ba) and negative anomalies in Nb. These features suggest they may have originated in a mantle, enriched during a previous subduction event. The Kgwebe metarhyolites are marked by Y>60 ppm, Sr/Y<1, Rb/Th>20 and high K-contents. They cannot therefore be the product of melting of sediments or a subducting slab. It is inferred that they represent felsic magmas resulting from melting of Mesoproterozoic (Kibaran) calcalkaline rocks underplated in the middle and/or lower crust. The Kgwebe bimodal metavolcanic rocks pre-date the Neoproterozoic Ghanzi Group rocks which are correlated with the lower part of the Damara sequence. The chemical composition and field relations suggest that these metavolcanic rocks were emplaced during a late orogenic collision-associated extensional collapse. This collapse affected a crust thickened during the Kibaran orogeny in the Namaqua-Natal Belt of southwest Africa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.