Abstract

The Taodonggou group of Middle Permian is an important source rock in Taibei sag of Turpan-Hami basin. Due to its deep burial, drilling has only been revealed in recent years. Based on organic petrology and organic geochemistry experiments, this paper studies the organic petrology, organic geochemistry, sedimentary environment, and hydrocarbon generation potential of source rocks in Taibei sag, Turpan-Hami basin, and reveals the influence of the sedimentary environment on the organic matter abundance of source rocks. The results are as follows: (1) The organic matter of the Middle Permian source rocks in Taibei sag of Turpan-Hami basin is mainly sapropelite and exinite. The vitrinite is mainly vitrodetrinite, and the exinite is mainly lamalginiite. (2) The total organic carbon content value is 0.55–6.08 wt %, and the average value is 2.58 wt %. The PG value ranges from 0.78 mg HC/g to 30.86 mg HC/g, and the average value is 4.88 mg HC/g. Chloroform asphalt “A” is 0.046–0.8767 wt %, and the average value is 0.285 wt %. The types of organic matter are mainly III and II–III, and the Ro value is 0.628–1.49 wt % (average = 0.988 wt %). The Tmax distribution is 329–465 °C. The average temperature is 434.7 °C, which is in the mature stage (oil window stage). The Middle Permian source rocks are mainly very good to excellent source rocks with a good hydrocarbon generation potential. (3) The source rocks are deposited in a semihumid and semiarid climate. Organic matter is input as a mixed source. The early and late stages is dominated by terrestrial higher plants. The middle stage is dominated by lower aquatic organisms, and the sedimentary environment consists of weak reduction and weak oxidation environments. (4) In the study area, the abundance of organic matter has a weak negative correlation with CPI and a positive correlation with Pr/Ph and ∑C21–/∑C22+. Under the coaction of paleoclimate, organic matter input, and redox environment, the enrichment model of organic matter with high productivity and weak oxidation environment characteristics can also form excellent source rocks. This study is of great significance and provides theoretical guidance for the exploration of deep oil and gas resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call