Abstract
Oilfield brines (produced water) are produced as a waste product daily at the gathering centers (GCs) in Kuwait oilfields. The geochemical evolution of the water produced at the GC (fresh brine) to stagnant pit water (evaporate) has been investigated in the northern fields of Kuwait, and a model is presented showing time-dependent variations. Kuwait oilfield brines are globally similar to others in other large sedimentary basins (USA, Canada), but modifications have occurred due to seawater injection practices performed episodically during the oil extraction process. Brine water chemistry changes from generally average brine chemistry (based on cations and anions) to saturated mixture of seawater, oilfield brine, and anthropogenic chemical pollutants. The objective of this study was to harmonize the database of brine waters in terms of regional identity by comparison with oilfield brines elsewhere, identify water–rock interaction, and statistically treat daily recordings from the pits in order to identify injection peaks and troughs. Laboratory analysis of major and minor cations and anions from the Rawdatayn samples gave the following concentration ranges in parts per million (ppm): (Na+, 11,698–203,977), (Ca2+, 2,216–98,514), (Mg2+, 1,602–28,885), (K+, 1,528–16,573), (Sr2+, 70–502), (Ba2+, 0.01–18.04), (Fe2+, 0.01–8.93), (Li+, 0.09–6.48), (Si2+, 0.00–13.18), (B3+, 0.05–37.45), (SO42+, 330–3100). For the Sabriyah oilfield samples, the major and minor cations and anions concentration ranges in ppm are: (Na+, 9,807–274,947), (Ca2+, 2,555–77,992), (Mg2+, 1,415–28,183), (K+, 764–19,201), (Sr2+, 77.84–641), (Ba2+, 0.15–6.76), (Fe2+, 0.016–38.88), (Li+, 0.05–6.83), (Si2+, 0.0195–16.84), (B3+, 7.17–55.33), (SO42+, 44,812–135,264). The stable isotopic analysis of five samples indicates normal trends in oxygen and hydrogen isotopes that classify the waters as “connate” which follow an evaporation trend. Carbon isotopic signatures are normal for hydrocarbon fields and average out around GC15, δ18O‰ = 1.4, δD‰ = −10, δ13C‰ = −3.6; while for GC23, δ18O‰ = 2.3, δD‰ = −4, δ13C‰ = −2.5; for GC25, δ18O‰ = −2.0, δD‰ = −14, δ13C‰ = −4.6; for pit1, δ18O‰ = 2.3, δD‰ = −5, δ13C‰ = −18.3; and for pit 2, δ18O‰ = 2.5, δD‰ = −4, δ13C‰ = −17.8. Carbon isotope average values for all brine samples from the GCs is = −56 which falls within normal hydrocarbon formation water category. Data spikes coincide with injection periods at the following times (A: May–Jun, 2006), (B: Sep–Oct, 2006), (C: Jan–Feb, 2007), (D: Mar, 2007), (E: May–Jun, 2007), (F: Feb, 2006), (G: Mar–Apr, 2006) and, subsequently the decay to “normal” brine occurs over a period of several weeks. The database was large enough to apply a principal component statistical analysis (PCA). PCA and geo-statistical techniques reveal several distinct population groups. The main chemical groups in the data are as follows: plateau, spike groups, and pit evaporation group. The spike periods correlate closely with seawater injection periods (Jan–Feb, Mar–Apr, May–Jun, and Sep–Oct). The pit chemistry reveals exceptionally high evaporation processes coinciding with summer peak temperature. PCA results show distinct groupings centered around the major elements reminiscent of other oilfields, but with the added evaporation trend strongly enhanced.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.