Abstract
The Tri-State and Northern Arkansas districts of the Ozark plateau, North America, are both classic examples of Mississippi Valley-type (MVT) mineralization, formed by continent-scale basinal brine migration as a result of the uplift of the Arkoma foreland basin in response to the Early Permian Ouachita orogeny. The chemistry of the fluids responsible for both sulfide mineralization and gangue precipitation in these districts was studied by quantitative microanalysis of individual fluid inclusions in quartz and sphalerite using 213-nm laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Using halogen systematics, an evaporative seawater origin for the brines was determined, but higher Br concentrations suggest that the sphalerite-hosted “ore fluids” underwent a significantly greater degree of evaporation in the initial stages of fluid evolution compared to brines hosted by gangue phases. Metal contents of the brines responsible for quartz and dolomite precipitation are low compared to modern basinal brines, but many of the fluid inclusions trapped in sphalerite in both districts contained anomalously high metal concentrations, suggesting that mineralization involved incursion of a metal-rich fluid of distinct geochemistry. Examination of the multicomponent chemical characteristics revealed that dolomitization was probably an important process in the early chemical evolution of fluids that infiltrated both districts. In the Tri-State district, precipitation of sulfides was most likely driven by mixing of the metalliferous fluid with another brine, possibly rich in reduced sulfur. In northern Arkansas the compositional variations observed are best explained by local dissolution of the carbonate host rock. This may have been the process that ultimately drove sulfide deposition through fluid neutralization and reduction. Alternatively, the digestion of the host rock may have been the result of locally generated acidity produced by the deposition of sulfides. The discovery of anomalously metal-rich fluids linked to mineralization suggests that these deposits are not simply the product of typical basin evolution, helping to explain the abundance of MVT mineralization in some forelands, whereas others are barren. It is likely that a significant portion of the history of the hydrothermal flow system was characterized by the precipitation of barren gangue assemblages from metal-poor brines, with metalliferous fluids only being expelled from a specific stratigraphic package at a distinct stage of basin evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.