Abstract

The water column in brackish and saline lakes hosts various forms of sulfur including sulfide (hydrosulfide), elemental, thiosulfate, and sulfate sulfur. The unequal distribution of these reduced sulfur species indicates the presence of two opposing processes - sulfate reduction and oxidation of newly formed hydrogen sulfide. The scale of these processes varies among lakes, resulting in differing proportions of reduced sulfur forms. The bacterial reduction of sulfate ions is confirmed by a significant separation of sulfur isotopes into sulfide and sulfate ions, with the lighter isotope accumulating in the former and heavier isotope in the latter. In most soda, chloride, brackish, and salt lakes, sulfate reduction is the principal process responsible for relatively low sulfate ion content. Additionally, the presence of an oxidizing environment and sulfides in host rocks provide additional sources for sulfates, leading to the formation of sulfate-type lakes. The formation of specific types and subtypes of brackish and salt lakes is determined by processes such as water evaporation, dissolution of aluminosilicates, sulfate reduction, and oxidation of sulfides. The dominance of these processes contributes to the geochemical diversity of lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call