Abstract

The floodplain of the Morava River in Strážnické Pomoraví, south-east Moravia, Czech Republic contains a very valuable record of regional environmental change, which goes back to several thousand years. Its interpretation has been limited by poor stratigraphic correlation and dating of the sediments. We present a geochemical solution to this challenge. We studied 8 outcrops of floodplain deposits from 4 localities along a 6 km long part of the current meander belt of the Morava River in Strážnické Pomoraví using geochemical proxy analyses, magnetic susceptibility measurements, 14C dating of wood remnants, and sediment micromorphology. The proxy methods are based on elemental analysis (EDXRF) and analysis of the cation exchange capacity of clay minerals; granulometric analyses provided the basis for lithological and facies assignment of the sediments. Our geochemical and mineralogical interpretations have further been tested by microstratigraphically studying the optical properties of the fine fraction. Horizons older than about 3 centuries were 14C dated using wood remnants and the age of deposits from the last century was determined on the base of several proxies reflecting their industrial contamination by heavy metals and magnetic particles. The mean depositional rate over the period from about 1000 to about 1900 AD ranged from 0.2 to 0.6 mm y− 1, depending on the sedimentary facies. The coeval lithological change in the majority of the studied sections indicated a change of the meander belt structure at between ~ 1200 AD and ~ 1600 AD probably as a consequence of changes of channel structure. The alluvial deposition in the 20th century was strongly affected by the river regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call