Abstract

The buildup of high pressure in the casing-casing annulus (CCA) threatens well integrity and can cause serious incidents in case of left untreated. Either, trapped water in the cement column or a dynamic water inflow represent potential fluid sources for the elevated CCA pressure. This study presents a sequential methodology to determine the provenance of CCA effluent as trigger for high pressure in newly drilled wells. Single fluid types, multicomponent mixing, and secondary fluid alteration processes were identified through inorganic geochemical techniques; in detail by monitoring the hydrochemical (major, minor, and trace elements) and stable isotopic (δ2H, δ18O) relationship between fluid candidates. As a proof-of-concept, geochemical signatures of CCA effluent from three wells were linked with potential source candidates, i.e., utilized drilling fluids (mud filtrate, supply water) from the prospect well site, groundwater from Lower - Upper Cretaceous aquifers, and Upper Jurassic - Upper Triassic formation waters from adjacent wells and fields. The detection of geochemical affinities of CCA water with groundwater from a Lower Cretaceous aquifer postulates one single lithological unit as source for active groundwater inflow. Nonreactive elements (Na+, Cl−) and environmental isotopes (δ2H, δ18O) were found to be most suited tools for primary fluid identification. The 2H/1H and 18O/16O ratios of supply water and mud filtrate are generally close to global meteoric water and Tertiary groundwater composition, while formation water from Mesozoic units (Cretaceous, Jurassic, and Triassic) can individually be distinguished through increasing ratios in δ18O and δ2H. Compositional anomalies in SO42− and K+, and extreme alkaline conditions for CCA water indicate the occurrence of secondary fluid alteration processes, likely caused by the contact of inflowing groundwater with alkaline minerals in the cement column or by fluid mixing with residuals of potassium chloride (KCl) additives from the drilling process. The geochemical techniques from this study facilitate the detection of high CCA pressure and fluid leakages sources. As a practical benefit, workover engineers are enabled to plan for potential remedial actions prior to moving the rig to affected well sites; thereby significantly reducing operational costs. Appropriate remedial solutions can be induced for safe well abandonment, plus to resume operation at the earliest time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call