Abstract

The ∼ 2.7 Ga Sandur Superterrane is located within the central belt of the ∼ 2.6 Ga Closepet granite that divides the Dharwar craton into eastern and western sectors. The composite SST includes multiple terranes defined by distinct lithological associations, and metamorphic-deformational histories, demarked by accretionary structures. The Sultanpura volcanic terrane includes well preserved spinifex textured komatiites and komatiitic-basalts, with pillowed tholeiitic basalts. Komatiites and komatiitic-basalts have Mg# of 0.82–0.84 and 0.55–0.64 respectively, and plot near the olivine control line, whereas basalts have Mg# 0.53–0.69. All three volcanic types can be divided into two populations based on Nb/Th ratios: for rocks with Nb/Th < 8, there is covariation with Th, and (La/Sm) N interpreted to be the result of crustal assimilation fractional crystallization (AFC), whereas those rocks with Nb/Th > 8 plot along the Mid Oceanic Ridge Basalt–Oceanic Island Basalt array in Th/Yb vs. Nb/Yb coordinates. Collectively, the data are interpreted as signatures of a zoned mantle plume, having multiple sources that erupted through, or at the margin of, continental lithosphere. Felsic flows associated with arc basalts of the eastern felsic volcanic terrane, tectonically juxtaposed to the Sultanpura volcanic terrane, have adakitic compositional characteristics: elevated Al 2O 3 but low Yb (0.30–0.50 ppm) contents, coupled with high (La/Yb) N (43–71) and Zr/Sm (37–41) ratios, but low Nb/Ta (5–12). These features, in conjunction with mostly positive Eu anomalies, rule out detectable crustal contamination, such that adakitic flows and associated basalts and volcanogenic sedimentary rocks having normalized anomalies at Nb–Ta–P–Ti, represent an arc association. Consequently, the distinctive magmatic associations of the Sultanpura and eastern felsic volcanic terranes are consistent with the Sandur Superterrane being tectonic fragments of distinct continental and oceanic provenance tectonically juxtaposed in a Cordilleran type, accretionary orogen at ∼ 2.7 Ga.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call