Abstract

Vanadium (V)-contaminated soil poses health risks to plants, animals, and humans via both direct exposure and through the food chain. Stabilization treatment of metal-contaminated soil can chemically convert metal contaminants into less soluble, mobile, and toxic forms. However, the stabilization mechanisms of V-contaminated soil have not been thoroughly investigated. Therefore, we performed geochemical modeling of V-contaminated soil stabilized with the common binders calcium oxide (CaO) and ferrous sulfate (FeSO4), as well as their mixture, using Visual MINTEQ software. The results were validated and exhibited good agreement with experimental results. For CaO, the formation of Ca2V2O7(s) and Ca3(VO4)2·4H2O(s) under mild and strong alkaline conditions (pH = 8.0–11.5 and 11.5–12.5), respectively, were predicted as the main immobilization routes. For FeSO4, there appeared to be three reaction routes, corresponding to approaches A, B, and C, during the stabilization process. In the simulation, approach C (adsorption of V(V) onto ferrihydrite) was undervalued, whereas approaches A (formation of Fe(VO3)2(s)) and B (reduction of V(V) into V(IV) to form V2O4(s) or adsorb onto soil organic matter) were overvalued. Among the three approaches, approach C had a dominant role and exhibited good agreement with the experimental results. Additionally, soil pH and the saturation index of precipitation had major roles in the stabilization process. The optimal pH ranges for the stabilization of V-contaminated soil using CaO and FeSO4 were pH = 9.5–12.5 and pH = 4.0–5.0, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.