Abstract

Soil samples were collected at 420 locations in a 5-km grid pattern in the Istria and Gorski Kotar areas of Croatia, and on the Croatian islands of Cres, Rab and Krk, in order to relate geochemical variation in the soils to underlying differences in geology, bedrock lithology, soil type, environment and natural versus anthropogenic influences. Specific objectives included assessment of possible agricultural and industrial sources of contamination, especially from airborne effluent emitted by a local power plant. The study also tested the adequacy of a fixed-depth soil sampling procedure developed for meager karstic soils. Although 40 geochemical variables were analyzed, only 15 elements and 5 radionuclides are common to all the sample locations. These elements can be divided into three groups: (1) those of mostly anthropogenic origin — Pb, V, Cu and Cr; (2) those of mixed origin — radionuclides and Zn; and (3) those of mostly geogene origin — Ba, Sr, Ti, Al, Na, Ca, Mg, Fe, Mn, Ni and Co. Variation in Pb shows a strong correlation with the pattern of road traffic in Istria. The distributions of Ca, Na and Mg in the flysch basins of southern Istria and Slovenia are clearly distinguishable from the distributions of these elements in the surrounding carbonate terrains, a consequence of differences in bedrock permeability, type of drainage and pH. The spatial pattern of 137Cs from the Chernobyl nuclear power plant accident reflects almost exclusively the precipitation in Istria during the days immediately after the explosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call