Abstract
Fly ash-brine co-disposal technique has been considered as a way of disposing fly ash and brine (hyper-saline water) by some power stations in South Africa. This practice was aimed at using the fly ash to capture most of the elements in brine. However, the geochemical partitioning of the major elements in the waste materials after the fly ashbrine interaction has not been fully understood. This study focuses on understanding the geochemical partitioning of the major elements captured in the fly ash solid residues after the fly ash-brine interaction experiment. XRF and sequential extraction procedure were respectively applied to determine the chemical composition and partitioning of the major elements in fresh fly ash and the solid residues recovered after fly ash-brine interaction. The comparison of the results of the XRF analysis carried out on the fresh fly ash and the solid residues showed that the major elements such as Si, Ca, Mg and Na increased in the solid residues after the fly ash-brine interaction. This indicates that Ca, Mg and Na in the brine solution were captured by the fly ash during the interaction. However, the sequential extraction results showed that significant concentrations of Ca, Na and Mg were released into the water soluble, exchangeable and carbonate fractions. The results show that significant amounts of the elements captured in the fly ash solid residues during fly ash-brine interaction exist in the form which can be easily leached out when in contact with aqueous solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.