Abstract

AbstractThe Okinawa Trough is one of three known hydrothermal sites worldwide where liquid carbon dioxide is emitted from the seafloor into the water column. In March 2008, investigations were performed at two active areas, Yonaguni Knoll IV and Hatoma Knoll, in order to identify impacts of hydrothermal venting on the water column chemistry. Vertical profiles of pH and redox potential (Eh) were recorded and discrete water samples were taken for the analysis of total carbon dioxide (CT) and helium (3He, 4He). Anomalies with respect to reference stations (ΔCT, ΔpH) and 3He with respect to saturation with the atmosphere (3Heexcess) were used to characterize the impact of hydrothermal vents. These data indicate that the flux of CO2 into the water column is dominated by hot hydrothermal CO2‐rich vents located in close proximity to the liquid CO2 emission sites. Bubbles and droplets sampled at the cold gas outlets at Hatoma Knoll differed considerably from the water column regarding CO2/3He ratios, and thus, provide additional evidence that cold liquid phase CO2 is of minor importance for the total CO2 flux at both hydrothermal systems. Although hydrothermal vents at back‐arc basins are known to emit large amounts of acids other than CO2, the correlation between ΔpH and ΔCT at both research areas clearly suggests that the observed pH reduction is mainly caused by the addition of CO2. Deviating ΔCT/3He and ΔCT/ΔpH ratios and the prevailing water currents indicate a yet undiscovered vent site at the flank of a seamount in the northeast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.