Abstract

Our newly obtained data on the geochemistry and age of plagiogranite-gabbronorite association in the oceanic core complex of the Mid-Atlantic Ridge (MAR) at 5°10′S suggest close genetic relations between these rocks in this segment of the ridge. The U/Pb zircon age of an oceanic plagiogranite (OPG) sample is 1.059 ± 0.055 Ma and is in good agreement with the zircon age of plutonic rocks in the oceanic core complex of northern MAR. A distinctive geochemical feature of the rocks is their unusually depleted 87Sr/86Sr and 143Nd/144Nd ratios, which suggest that the plutonic rocks of the gabbronorite-plagiogranite association in MAR at 5°10′S could be derived from the most strongly depleted mantle reservoir of all known to occur beneath the axial MAR zone. The COMAGMAT-5.2 numerical thermodynamic simulation of the possible crystallization links between the plagiogranite and gabbronorite from the MAR segment at 5°10′S led us to conclude that the leading role in the origin of the plagiogranite was played by a two-stage process: the partial melting of the gabbronorite and the subsequent fractionation of the newly generated melt. The regional differences between the isotopic-geochemical parameters of MAR plagiogranites can, perhaps, reflect local specifics of so-called hydrothermal anatexis, such as the geochemical features of the rocks involved in this process and the parameters of the hydrothermal process, for example, variations in the W/R ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call