Abstract

AbstractMantle melting and fractional crystallization are two fundamental processes that control the compositional variations in the erupted basaltic melts. Most of the geochemical variations in the primary mantle-derived melts are generally attributed to mantle heterogeneity. With simple forward modelling techniques, it is illustrated that different melting types (batch, fractional and continuous) are capable of producing large variations in elemental abundances in the primary magmas derived from a homogeneous mantle source. There is no reason to invoke mantle heterogeneity. Similarly, variations in the cumulate and corresponding residual liquid geochemistry are demonstrated alluding to rare earth element abundances. Variable partition coefficients for cumulus phases and different amounts of intercumulus liquid depict pseudo liquid-lines-of-descent in cumulate rocks on X–Y type plots. It is documented that assimilation fractional crystallization (AFC) produces greater variations in trace element concentrations in both cumulates and residual liquids. It is found that infinitesimally small solid and liquid compositions, amended by AFC, have similar trace element abundances. Two Indian examples are cited to support the theoretical modelling of mantle melting and cumulus processes presented here.KeywordsMantlePartial meltingFractional crystallizationGeochemical modelling

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.