Abstract

Contamination of groundwater by naturally occurring arsenic has recently become a disturbing environmental problem in Viterbo area, Central Italy. Arsenic concentrations in most of the public supply networks exceed the maximum allowable limit of 10 μg/l (WHO) for drinking water. The primary purpose of this paper is to obtain a better understanding of the factors contributing to the high levels of As in water supply networks. This study focuses on (a) the determination of basic hydrochemical characteristics of groundwater, (b) the identification of the major sources and processes controlling the As contamination in public supply networks, (c) to find out possible relationships among the As and other trace elements through principal component analysis (PCA). Groundwater samples from public water supply wells and springs were collected and analysed for physico-chemical parameters and trace elements. Springs and well water samples are predominantly of the Na–HCO3, Na –Ca–HCO3 and Ca–HCO3 types and the highest arsenic concentrations were observed in Na–HCO3 type water. Eh-pH diagrams reveal that H2AsO4− and HAsO42−, As(V) arsenate, are the dominating As species highlighting slightly to moderately oxidizing conditions. Geochemical modeling indicates that arsenic-bearing phases were undersaturated in the groundwater, however most of the samples were saturated with respect to Fe (i.e. magnetite, hematite and goethite) and Al (diaspore and boehmite) oxide and hydroxide minerals. Concentrations of As, Li, B, Co, Sr, Mo, U and Se are highly correlated (r > 0.7) with each other, however in some groundwater samples As show also good correlations (r > 0.5) with Fe and Mn elements reflecting the relationships among the trace elements result from different geochemical processes. Evaluation of the principal component (PCA) analysis and geochemical modeling suggest that the occurrence of As and other trace element concentrations in groundwater are probably derived from (i) weathering and/or dissolution of volcanic source aquifer materials and (ii) adsorption/desorption processes on the Fe and Al oxide and hydroxide minerals.

Highlights

  • Groundwater resources are generally less susceptible to pollution than surface water and are considered the best supply for drinking water, in many parts of the world people suffer from poor drinking water quality (Chapman 1992; Foster et al 1997)

  • Preliminary initiatives have been undertaken by Italian National Institute of Health (ISS) and Optimal Territorial Area Authorities n°1 (ATO) to develop technical solutions, plant and/or management to reduce the arsenic concentrations in groundwater used for domestic purposes

  • Most of the groundwater samples show supersaturation with respect to Fe and Al oxide and hydroxide mineral phases suggesting that aqueous environments. To understand (As) concentrations in groundwater probably was controlled by adsorption/desorption processes on these minerals

Read more

Summary

Introduction

Groundwater resources are generally less susceptible to pollution than surface water and are considered the best supply for drinking water, in many parts of the world people suffer from poor drinking water quality (Chapman 1992; Foster et al 1997). The impact of human activities and the environmental drinking water. The presence of arsenic and other toxic trace elements in water supply networks is a threat to population and agricultural activities (Roychowdhury et al 2002; Meharg and Rahman 2003, Shakeel and Amal 2011). According to the World Health Organization (WHO), the provisional limit of arsenic in drinking water is 10 μg/l, and the same limit was adopted by the European commission (WHO 2006). The same limit has been take place in the Italian legislation (Legislative Decree 31/2001 “Implementation of Directive 98/83/EC on the quality of water intended for human consumption”)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.