Abstract
ABSTRACT. Interest in the geochemistry of groundwater is increasing owing to the great number of current projects involving underground liquid waste storage, artificial recharge of potable water, accidental contamination of groundwater bodies, sanitary landfills, and pollution monitoring. Geochemical techniques used to facilitate the understanding of a groundwater system range from extremely simple to those requiring sophisticated theories, equipment, and procedures. An interpretation of the simple trilinear diagram for samples collected from the Yucatan Peninsula of Mexico provided evidence that the fresh‐water body was only a few tens of meters thick and was underlain everywhere by an extensive body of salt water. A geochemical technique that has been used effectively to identify the source of salt water in coastal aquifers is measurement of the carbon‐14 concentrations. Carbon‐14 has been used in a regional carbonate aquifer to determine the velocity of groundwater movement, rates of chemical reactions, and distribution of hydraulic conductivity. The application of principles of irreversible thermodynamics to groundwater systems provides a basis for constructing models which permit prediction, over both time and space, of changes in head distribution and chemical character of the water resulting from imposed stresses on the system. In essence, proper application of irreversible thermodynamics combines the potential theory of Hubbert with principles of reversible chemical thermodynamics, such as solution of carbonate minerals, to describe and explain controlling chemical reactions and processes of groundwater systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.