Abstract
Based on the synthesis of hydrogeochemical materials on Sb occurrence in carbonate and thermal waters and thermodynamic simulations, genetic analysis was conducted of the transformations of probable Sb migration species (particularly oxygen-bearing and sulfide ones), and their transformations were calculated depending on the main parameters of hydrogeochemical systems (\( P_{CO_2 } \), T, R/W, Eh, and pH). The oxygen 2HSbO 2 0 + 3H2S = Sb2S3 + 4H2O (2SbO 2 − + 3HS− + 5H+ = Sb2S3 + 4H2O) and sulfide HSb2S 4 − + H+ = Sb2S3 cr + H2S (Sb2S 4 2− + 2H+ = Sb2S3cr + H2S) models for the genesis of hydrogenic Sb2S3(cr) were simulated. Information on occurrences of carbonate and thermal waters in various regions worldwide was generalized, and the reasons were identified for the geochemical separation of As and Sb in carbonate and thermal waters. The causes and conditions of an increase in Sb concentrations in thermal waters were revealed, and Sb migration species in carbonate and thermal waters were identified for various parameters of hydrogeochemical systems. Variations in Sb speciation were demonstrated for hydrogeochemical systems depending on their boundary conditions (\( P_{CO_2 } \), T, and R/W). Models were outlined responsible for the precipitation of Sb2S3(cr) from carbonate and thermal waters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.