Abstract

The pegmatites in Angwan Doka, north central Nigeria are genetically related to the basement granites formed during the Pan-African orogeny, 550–530 Ma ago. They occur as sharply discordant dykes in the granitic and metasedimentary basement rocks. The pegmatite population comprises of mineralogically simple and complexly zoned types that are characterized by LCT (Li, Cs and Ta) geochemical signature. The host granitoids range in composition from hornblende, titanite-bearing to biotite–muscovite granodiorites. Analysis of geochemical data of whole rock and muscovite from the different zones reveals compositional variations and evolution across the pegmatite body from border zone to the lepidolite-quartz core zone. Fractionation of Rb, Cs, Sr, Li, F, B, Be Sn, Zn, Ta, Nb and Mn which increases from host granitoids, through the border zone to the central core, with decrease in Fe, Mg, Ti, Ba content, is typical and marks the magmatic crystallization trend of the pegmatites. Other distinctive attribute of the pegmatites is occurrence of cassiterite believed to have formed as a consequence of greisenization, albitization and late-stage metasomatism, which led to enrichment in Sn (up to 886 ppm) in the intermediate zone. Chemical composition of muscovite from the different zones of the pegmatite reveals high concentration of primary magmatic columbite-Fe (ferrocolumbite and ferrotantalite) in the border zone and tantalite-Mn (manganocolumbite and manganotantalite) in the core zone. Ta predominates (352 ppm) in the most evolved lepidolite (Li- and F-rich) zone while Nb was enriched (up to 714 ppm) in the border zone. These geochemical features are ascribed to undercooling of the melt and crystallization in boundary layers accompanied with increased accumulation of incompatible and fluxing components. With increasing fractionation, Nb/Ta and Fe/Mn ratio decreased and is accompanied with increase in Rb, Cs, Li, F and Be typical of crystallization from magmatic process. The sequence of zonation, origin and formation of the different pegmatite zones can be explained by a single path of fractional crystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.