Abstract
This study investigates how saprolization influences inherent rare-earth element (REE) source rock signatures and how depositional environment(s) and diagenetic reactions ultimately impact the REE signature within sedimentary kaolin bodies. Rare-earth element geochemistry signatures are particularly useful for tracking element sources and mobility and are, therefore, powerful tools in the investigation of clay mineral formation and diagenesis. Rare-earth element and bulk chemical compositions were determined using discrete chemical analyses and chemical imaging. Saprolitic materials show an enrichment in the light and heavy REEs, compared with the parent material, with enhanced Ce/Eu anomalies. Light REEs within sedimentary kaolins are associated with phosphate mineralogy and have experienced variable degrees of diagenetic fractionation and mobilization. Cretaceous kaolins display more light REE mobility compared with Tertiary kaolins, which show very little REE fractionation. Degrees of REE fractionation...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.