Abstract
The geochemical suitability of a deep bedrock repository for radioactive waste disposal is determined by the composition of geomatrix and groundwater. Both influence radionuclide solubility, chemical buffer capacity and radionuclide retention. They also determine the chemical compatibility of waste forms, containers and backfill materials. Evaluation of different groundwater–host rock systems is performed by modeling the geochemical environments and the resulting radionuclide concentrations. In order to demonstrate the evaluation method, model calculations are applied to data sets available for various geological formations such as granite, clay and rocksalt. The saturation state of the groundwater–geomatrix system is found to be fundamental for the evaluation process. Hence, calculations are performed to determine if groundwater is in equilibrium with mineral phases of the geological formation. In addition, corrosion of waste forms in different groundwater is examined by means of reaction path modeling. The corrosion reactions change the solution compositions and pH, resulting in significant changes of radionuclide solubilities. The results demonstrate that geochemical modeling of saturation state and compatibility of the host formation environment with the radioactive waste proves to be a feasible tool for evaluation of various sites considered as deep underground repositories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.