Abstract
Rock–Eval pyrolysis analysis, burial history, and 1D thermal maturity modeling have allowed the evaluation of the source rock potential, thermal maturation state, and impacts of the Pabdeh and Gurpi Formations in Cretaceous–Miocene petroleum system in the Naft Safid (NS) and Zeloi (ZE) oilfields, North Dezful Embayment. The total organic carbon (TOC) content of the Pabdeh and Gurpi Formations ranges from 0.2 to 4.7 wt% and 0.3 to 5.3 wt%, respectively. S2 values of the Pabdeh Formation in the ZE and NS oilfields vary from 0.41 to 13.77 and 0.29 to 14.5 mg HC (Hydrocarbon)/g rock, with an average value of 4.48 and 4.14 mg HC/g rock, respectively. These values for the Gurpi Formation in the ZE and NS oilfields range from 0.31 to 16.96 and 0.26 to 1.44 mg HC/g rock, with an average value of 8.54 and 2.43 mg HC/g rock, respectively. The S2 versus TOC diagram reveals a fair to good hydrocarbon generation potential of the Pabdeh Formation and poor to fair potential of the Gurpi Formation. The high values of S2 (S2 > S1) for samples of the both formations in the ZE and NS oilfields show that the samples are not contaminated with petroleum generated from underlying source rocks. The samples of the Pabdeh Formation in the ZE oilfield are characterized by a relatively narrow range of activation energy values with principal activation energy of 46 kcal/mol and frequency factor of 5.27 × 10+11 s−1. It seems that the high sulfur content of the Pabdeh organic matter probably caused the frequency factor and principal activation energy to be lower than usual. Hydrogen index (HI) values of the Pabdeh and Gurpi Formations in the ZE oilfield vary from 71 to 786 and 97 to 398 mg HC/g TOC, with an average value of 310 and 277 mg HC/g TOC, respectively. These values in the NS oilfield range from 66 to 546 and 51 to 525 mg HC/g TOC, with an average value of 256 and 227 mg HC/g TOC, respectively. Plot of HI vs. Tmax value indicates that the majority of the Pabdeh and Gurpi samples contain predominantly type II kerogen and their organofacies are directly related to the more homogeneous precursor materials. Based on thermal maturity modeling results, kinetic parameters, and Rock–Eval analysis, both formations in the ZE and NS oilfields are thermally mature and immature or early mature stage, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.