Abstract

The behaviour and fate of trace elements in surface waters are greatly affected by their chemical form in solution, but the aqueous speciation of dissolved trace elements in the North American Great Lakes has received relatively little attention. Here, we present results from geochemical equilibrium modelling with 2021 surface water quality data to examine the spatiotemporal dynamics of trace element speciation in the Great Lakes. The relative abundance of aqueous trace element species appeared consistent with variability in solution chemistry and followed basin-wide trends in pH, alkalinity, salinity, and nutrient levels. The speciation of alkali metals was dominated by free monovalent cations, and that of oxyanion-forming elements by oxoacids, whereas significant fractions (>1%) of other aqueous complexes were also evident for rare earth elements (e.g., Ce and Gd as carbonates), alkaline earth metals (e.g., Sr as sulfates), or transition metals (e.g., Zn as phosphates). Spatially, differences in the relative abundance of aqueous trace element species were <2 orders of magnitude, with the highest variation (~50-fold) occurring for select chloride-complexes, resulting from upstream-to-downstream salinity increases in the basin. Finally, simulations of various future water quality scenarios (e.g., decreasing P levels, increasing temperature and salinity) suggest that the speciation of most trace elements is robust temporally as well. This study demonstrates how considering aqueous speciation may help improve the understanding of trace element dynamics and support water quality management in the Great Lakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call