Abstract

The Neo-Archean Sonakhan Greenstone Belt (SGB) located in the north-eastern fringes of Bastar craton, Central India, is dominated by Basalts, Andesites, Dacites and Rhyolites association. Partial melting modeling on the SGB metabasalts indicates that these rocks were derived by 20% melting of spinel peridotite. Fractional crystallisation modeling with REE reveal that the most evolved samples represent the product of fractional crystallization of least evolved magma with 35% plagioclase, 35% clinopyroxene, 20% olivine, 5% magnetite and 5% ilmenite as fractionating minerals with 40% remaining magma. Depletion of HFSE with reference to the LILE and LREE/HFSE ratios and Nb, Zr anomalies in the multi-element diagram of the mafic rocks of SGB indicate Island arc magmatic setting. The enriched Th/Yb values further substantiate that the mantle arrays were modified by subduction-related fluids or melts. The general conclusions drawn indicate that the metabasalts from the SGB were formed as a result of subduction of an intraoceanic lithosphere in a fore-arc suprasubduction zone environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call