Abstract
Major- and trace-element abundances in the major units (gabbro, anorthosite, monzonite, syenite, and granite) of the unmetamorphosed Sept Iles complex have been evaluated to determine if these rocks can be related by simple magmatic processes or if it is necessary to invoke separately derived magmas. Major-element mass-balance and trace-element distribution calculations indicate that the diorite and quartz syenite were produced by fractional crystallization of plagioclase and augite, together with minor hypersthene and ilmenite, from a parental gabbroic magma. The Sr depletion of the granite, as compared with the quartz syenite, cannot be developed readily by partial melting and is better explained by fractional crystallization models. Major-element mass-balance solutions indicate that the granite was formed by removal of alkali feldspar, plagioclase, amphibole, and ilmenite from a quartz syenitic magma. Depletion of REE in the granite was probably the result of amphibole or REE-rich accessory mineral fractionation. It is unlikely that an unrelated, independently generated granitic magma could have a composition so related to the remainder of the complex. Therefore, fractional crystallization of a parental gabbroic magma is the dominant process that controlled the diversity of magma in the complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.