Abstract

O contents, which can be attributed to the Alpine source supplying fresh, sodic plagioclase-rich material instead of the local, strongly weathered sediments. Increasing K2O/Al2O3 can be attributed to a similar decrease in degree of weathering. However, this trend is disturbed by the loss of K from clay minerals during weathering in organic-rich layers. Local high TiO2 anomalies, caused by preferential sorting and concentration, are found in most Pliocene sections, but they are absent in the Upper Pliocene and Lower Pleistocene Alpine-derived deposits. This change is probably due to a change in the energy of the fluvial system. Finally, (pyrite-) S contents drop (siderite-) Fe contents rise. Micromorphological observations indicate that the Pliocene pyrite was formed when freshwater deposits were flooded with seawater during short-term events. The decrease in S, and the increase in siderite-Fe, can be attributed to decreasing marine influence, as a result of the marine regression at the Pliocene–Pleistocene transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call