Abstract
AbstractDuring the ongoing uplift and expansion of the southeastern margin of the Tibetan Plateau, the front edge of the Sichuan‐Yunnan rhombic block (SYB) has experienced intense tectonic activity and frequent seismicity. In this study, the fluid geochemistry in the primary active faults at the front edge of the SYB was investigated, with the aim of understanding the tectonic activity and intersection relationship between the Xiaojiang fault (XJF) and the Red River fault (RRF). Thermal spring water and gases exhibit a coupled spatial distribution relationship; relatively high ion concentrations and 3He/4He ratios (Rc/Ra ratios of 0.21 to 0.62Ra) are observed along the RRF, Qujiang fault (QJF), and Shiping‐Jianshui fault (SJF). Multidisciplinary research results have indicated that mantle‐derived intrusion has been detected in the crust beneath the QJF and SJF. The current tectonic activity in the front edge of the SYB remains intense, with compressive stresses shifting toward the western side of the XJF and accumulating on the QJF and SJF. This has led to the development of fractures, enhancing the water–rock interaction and deep‐derived gas degassing along the faults. The unmixing characteristics of fluids at the intersection area of these two faults suggest the absence of conduits for fluid migration between the faults. Owing to the lower gas 3He/4He ratios, lower shear strain rates, stable reservoir temperature field, and extremely low historical seismicity in the Indo‐Chinese block, it is speculated that the current movement of the XJF may not cut through the RRF and continue southward.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.