Abstract
Geochemical characteristics of stream sediments [n=31; Upstream section: Zahuapan River (1–12) and Atoyac River (13–20); Downstream section (21–31)] from Atoyac River basin of Central Mexico have been evaluated. The study focuses on the textural, petrography and chemical composition of the fluvial sediments with the aim of analyzing their provenance, the chemical weathering signature and their potential environmental effects. The fluvial sediments are mostly composed of sand and silt sized particles dominated by plagioclase, pyroxenes, amphiboles, K-feldspar, biotite, opaque and quartz. The sediments were analyzed for determination of major (Al, Fe, Ca, Mg, Na, K, P, Si, Ti), trace elements (As, Ba, Be, Co, Cr, Cu, Mo, Mn, Ni, Pb, Sc, V, Y, Zn, Zr, Ga) and compared with Upper continental crust (UCC), source area composition and local background values. The elemental concentrations were comparable with the average andesite and dacitic composition of the source area and the local background values except for enrichment of Cu (56.27ppm), Pb (34ppm) and Zn (235.64ppm) in the downstream sediments suggesting a significant external influence (anthropogenic). The fluvial sediments of Atoyac River basin display low CIA and PIA values implying predominantly weak to moderate weathering conditions in the source region. Based on the provenance discrimination diagrams and elemental ratios, it is understood that the collected sediments are derived from intermediate to felsic volcanic rocks dominated in the study region. Metal contamination indices highlight the enrichment of Cu, Pb, Zn, Mo, Cr and S clearly indicating the influences from natural (weathering and volcanic activity) and external (anthropogenic) sources. Ecological risk assessment results indicate that Cr, Ni and Zn will cause adverse biological effects to the riverine environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.