Abstract
ABSTRACT In order to figure out the redox conditions and paleo-sedimentary environment of the Middle Devonian shales in the northwest of Guizhong Depression, the trace element analysis was conducted on the Middle Devonian cores (320.35–938.50 m) of the typical shale gas investigation well (GY-1) at a 1.50 m sampling interval through X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma mass spectrometry (ICP-MS). According to the test result, the average values of V/(V+Ni), V/Cr and Ni/Co in Nabiao formation (Fm.) are larger than 0.67, 4.65 and 7.71 respectively, and Nabiao Fm. is rich in biological assemblages such as tabasheer, ammonite, etc. These evidences indicate the rising sea level rose relatively in the sedimentation period of Nabiao Fm. and a deepwater shelf environment, which was favorable for the preservation of organic matters. The V/(V+Ni), V/Cr and Ni/Co in Luofu Fm. and Tangting Fm. are 0.38–0.65, 0.73–4.10 and 3.70–6.72 respectively, indicating that the sea level dropped relatively in their sedimentation period, during which the water bodies became shallow, and the sedimentary environment was a weak oxidizing shallow water shelf environment. In addition, the variation of TOC has a high correlation with the enrichment degree of Ba element, indicating the favorable conditions for the enrichment and preservation of organic matters under an oxygen-deficient environment. Moreover, according to the identification of trace element indexes, the northwest of Guizhong Depression experienced the sedimentary cycle of relative rise to relative fall of sea level from bottom to top in the Middle Devonian sedimentation period. The relative sea level rose to the highest in the sedimentation period of Nabiao Fm., in which the organic-rich shales with stable thickness and high organic content were deposited. Hence, the Nabiao Fm. could be regarded as the favorable exploration target interval in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.