Abstract

The Ordos Basin, the second largest sedimentary basin in China, contains the broad distribution of natural gas types. So far, several giant gas fields have been discovered in the Upper and Lower Paleozoic in this basin, each having over 1000×108m3 of proven gas reserves, and several gas pools have also been discovered in the Mesozoic. This paper collected the data of natural gases and elucidated the geochemical characteristics of gases from different reservoirs, and then discussed their origin. For hydrocarbons preserved in the Upper Paleozoic, the elevated δ13C values of methane, ethane and propane indicate that the gases would be mainly coal-formed gases; the singular reversal in the stable carbon isotopes of gaseous alkanes suggests the mixed gases from humic sources with different maturity. In the Lower Paleozoic, the δ13C1 values are mostly similar with those in the Upper Paleozoic, but the δ13C2 and δ13C3 values are slightly lighter, suggesting that the gases would be mixing of coal-type gases as a main member and oil-type gases. There are multiple reversals in carbon isotopes for gaseous alkanes, especially abnormal reversal for methane and ethane (i.e. δ13C1>δ13C2), inferring that gases would be mixed between high-mature coal-formed gases and oil-type gases. In the Mesozoic, the δ13C values for gaseous alkanes are enriched in 12C, indicating that the gases are mainly derived from sapropelic sources; the carbon isotopic reversal for propane and butane in the Mesozoic is caused by microbial oxidation and mixing of gases from sapropelic sources with different maturity. In contrast to the Upper Paleozoic gases, the Mesozoic gases are characterized by heavier carbon isotopes of iso-butane than normal butane, which may be caused by gases generated from different kerogen types. Finally, according to δ13C1-R0 relationship and extremely low total organic carbon contents, the Low Paleozoic gases would not be generated from the Ordovician source as a main gas source, bycontrast, the Upper Paleozoic source as a main gas source is contributed to the Lower Paleozoic gases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call